
internal diffusion transport of sugar within the capillary porous colloidal body. 

The data obtained are necessary for calculation of mass exchange electroextractors 
which could be used in the food and other industries. 

NOTATION 

~, root of characteristic equation; tan ~, tangent of averaging straight line; D, sucrose 
diffusion coefficient in capillary porous body with electric field applied; ~, mass transfer 
coefficient; R, reduced particle radius; de, equivalent diameter of interparticle channel; 
f, particle cross-sectional area; P, particle cross section perimeter; y, specific weight of 
particles; q, specific extraction chamber load; w, extraction liquid velocity in channel; V, 
volume of extraction liquid; Fi, total cross-sectional area of interparticle channels; F0, 
cross-sectional area of extraction chamber. 
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KINETICS OF COMBUSTION OF POLYDISPERSED COKE DUST 

Yu. M. Goldobin UDC 621.1.016:536.46 

A method for calculating combustion processes in self-similar systems of polydispersed 
solid fuel is developed, based on the kinetic equation for the particle distribution 
function over radius. 

The study of combustion of polydispersed fuel is beset by difficulties related to the 
nonlinearity of the problem and the presence of the various temperature, combustion rate, and ~ 
reagent concentration distributions, etc. In fuel combustion polydispersity of the particles 
is usually considered either by calculating the amount of fuel which remains unburned by a 
particular time, a quantity dependent only on the initial particle size distribution [i, 2], or 
by dividing the particle size spectrum into a number of fractions and performing calculations 
for each fraction [3]. These methods do not provide simple analytical expressions for calcu- 
lation of combustion characteristics, and require use of numerical methods. 

In [4], in a study of kinetics of mass exchange of a system of droplets with the surround- 
ing medium polydispersity was considered by introducing a kinetic equation for the distribution 
function f(r, T) of particles over radius. The present study will analyze solutions of this 
equation in detail, including self-similar systems, and generalize the result to a system 
with arbitrary initial distribution f0(r). It will be shown that the exact form of f0(r) affects 
only the initial stage of the process. The possibility of such an approach has been tested in 
a number of studies of heat--mass exchange of polydispersed systems with the surrounding medium 
[5-7], and generalized to some extent in [8]. 
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In the present study a kinetic equation for the particle distribution function over 
radius will be used to solve the problems of combustion of polydispersed coke dust under adi- 
abatic conditions. It will be assumed that the original dust consists of spherical particles 
of various size, that internal reactions are absent, that combustion occurs only in a primary 
reaction with formation of carbon dioxide, that the reaction rate is first order with respect 
to oxygen, and that the combustion is quasisteady-state and self-similar. The dust is injected 
into a medium of diluted oxidizer with initial temperature above the ignition temperature and 
ignition time will be neglected. 

The kinetic equation for the particle distribution function over radius f(r, T) has the 
form [4, 5] 

Of(r, T) .~_ 0 
& -ff;-r [ f (r ,  x ) le ( r ,  x)]----- O. (1)  

For the function f(r, T) the conditions 

dN (x) = Nof(r, "Odr; f (r, O)=fo(r);  .I f~ d r =  1 
o ( 2 )  

are satisfied. The combustion rate of an isolated particle was determined in [9] 

W(r, g ) = -  
dr 1 ftCox 

9 

dx --!-I -I- Z pp (3) 

k ~d 

where k = koexp [ - - E / R ~  1; ~ d =  NUdO/2r 

When Eq. (3) is used, the distribution function cannot be determined by the method of 
separation of Fourier variables, so convenient for self-similar systems [4], but it can be 
found for the limiting cases of combustion. 

i. Diffusion Region. From Eq. (3) we find 

w(r, ~c)- pCox NudD __ pCox o NudD o T g ,  
pp 2r p P 2r 273 (4) 

where Cox = ~ Tg ] 273 

The e m p i r i c a l  e x p r e s s i o n  Nu d = 2 + b r  m i s  v a l i d  f o r  t h e  d i f f u s i o n  N u s s e l t  number o v e r  a 
wide range of gas velocities relative to the particles. The distribution function can be 
found from Eq. (i) in quadratures, but to find the moments of various order it is necessary 
to use numerical methods, so we will consider only the cases of large and small Reynolds numbers 
Re. 

For large values of Re(Nud = br m) 

- -  ' , ( 5 )  r 1-m 29 p 

where 

 bgxo 
( r )  = - - "  ~, (,) - 

Fl--m ' 2pp 

Then from Eq. (i) with consideration of Eq. (5), using the method of separation of 
Fourier variables we obtain a general solution of the equation [I0] 

= r 2-m exp t" m rlr,   2:A, '-me P 
i=I 2 - - m  b (6) 

where ai and A i are constants, and from the condition (T = O) the initial particle-size 
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distribution 

[(r, O)=[o(r)  = ~ A ~ r  t - m e x p  ai r 2-"~ , 
i=~ 2 - - m  (7) 

It is evident from Eq. (7) that f0(r), usually calculated with the Rosin--Rammler formula, 
can be approximated by a set of spectral functions which define the choice of separation 
constants ~i and thus is related to combustion kinetics. 

Following [4, 5], we calculate the moment of order s: 

N o  I s--m~-2 s 
No t ~f (~' ~) d~ = x 2 - -  - -  Aiai (2 .... • m) 2-,--m 

< rs > = N('~) "o N ( ' q  ,=1 

• 2 4 7  exp ai .f~( 'c)  d~ . 
/ 2 - - m  o 

(8) 

Considering that beginning with time TO a unique regular regime sets in [4, 5], we obtain 

, ( No Aa 2-m ( 2 - - m ) ~ F  s exp 
"%C* 

From the normalization condition (s = 0) we have 

a 
I: o 

(io) 

We not introduce the fraction of the dust mass y which is still unburned at time T: 

y(-v)= M f(~)) ~ ~rSf(r ' T)dr= ( r ' )N (~ )  (11) 
Mf,o ro ~ oJ r-~& 

From Eqs. (9)-(11) at s = 1 we obtain 

2 - -  m -7  
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . -  , < r ~ > = r o  = 

( r o ) 2 . - ~  

2 -- m 

(12) 

The fraction of unburned fuel mass is determined from Eq, (ii) with consideration of 
Eqs.  ( 9 ) ,  (10 ) ,  (12) 

Y . . . .  exp 
a 

-c o 

We obtain a different equation for y from Eqo (13) 

dy = a o ( ~ ) y .  
dv (14) 

The oxygen concentration and diffusion coefficient appearing in w(T), Eq. (5), depend on the 
gas temperature Tg, therefore to solve Eq. (14) it is necessary to express Tg as a function 
of y. 

We write the thermal balance equation for the system, neglecting heat expanded in heating 
the particles: 

dTg := d./Plf 
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from the solution of which for initial conditions y(O) = i, Tg = Tg0 we obtain 

T = T  _~__QR l n [ l + v . . c r  ( l - - y ) ] ,  
g g o  ' c r c g 

Mfo tlf tZf 
where  ~ = -  ; cr.------Cox-~ ...... c r- 

Mg n ox n cp 

(16) 

Substituting Tg in Eq. (5) and expressing the oxygen concentration in the gases in terms 
of the fuel concentration, we obtain a nonlinear differential equation for y(z), the solution 
of which cannot be expressed in elementary functions, requiring use of numerical methods. 
Linearization of the natural logarithm in Eq. (16) with respect to the parameter ~ allows us 
to obtain a solution in final form. In this case we have 

Tg ~ T  o-~ +~*(1--y) ,  (17) 
QR 

where ~ * ~ -  -" 
Cg 

Calculation of the fraction of unburned fuel y from the exact Eq. (16) and the approxi- 
mate Eq. (17) shows that their results differ by no more than 4% for the entire range of 
possible. 

From Eqs. (14), (5), (17) we obtain 

dg 

d T  

where k = a * T  ; a*~: abCf~ ," k * - -  ~* 
go 2pp273 T 

gO 
Equa t ion  (18) can be s o l v e d  f o r  T: 

kf- (I + k* --k'y), (18) 

T = i [ k* f l+k*O--v)]+ i--v] 
k ( l + k * )  l + k *  In Y Y (19) 

For low values of Re(Nud = 2) the combustion rate can be determined from Eq. (4) 

W(r, ~ ) = 9 ( r ) a ( x ) =  1 ~CoxDoTg 
r 9p273 

I ~CoxoDoTg 
where ~(r)=--; ~) . . . .  

r pp273 
Then f rom Eq. (1) we o b t a i n  t h e  p a r t i c l e  d i s t i r b u t i o n  f u n c t i o n  over  r a d i u s  

(2o) 

f(r, x ) =  X A~r exp aF2 exp [a~. f a) (~)d~]. 
i ~ l  2 ' 0 

(21) 

Having performed the above calculations, we obtain the self-similar parameters 

a -  ; < P > = ro = (22) 

and an equation for y(T) in the form of Eq. (18) with parameters 

k : a*Tgo; a * :  aCf~176 - k* - a~* 
pp273 ' T. 

go 

2. Kinetic Region. The reaction rate is determined from Eq. (3) 
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Fig. i. Combustion of polydispersed coke dust: a) 
i, calculation with Eq. (19); 2, calculation by 
method of [Ii]; b) I, calculation with Eq. (19) for 
r--o = 30 ~m; 2, same for ~0 = 40 ~m; points, experi- 
ment [Ii]; ~, sec. 

(r, ~) = ~ ( r ) ~  (~) - ~Coxk~ exp pp [ RTp. 

where 

I pp RT p. 

The particle distribution function over radius has the form 

f(r, ~) -= ~_~ A~ exp [-- air] exp [a~ S ~o (T) d~]. 
i=l 0 

Calculation of moments of order s yields 

< r s ) = N o  

N (T) 
- -  ~.~ AtaF'~+')F(s~ - 1)exp [a~ .I~o (~)dz ]. 

f ~ l  0 

Repeating all the previous transforms, we obtain 

(23) 

(24) 

(25) 

1 -7 - 
a =  _ ; <r s>- -  r o= r~  (26) 

ro 

and Eqs. (13), (14), but with different parameters. To relate the gas temperature and the 
fraction of unburned fuel we use the same Eqs. (15), (16), (17), as for combustion in the 
diffusion region. Substituting in Eq. (14) the value of ~(T) from Eq. (20) and considering 
that for combustion in the kinetic region the particle temperature is close to the gas tem- 
perature, Eq. (17), we find 

exp --  
dy = - - a *  " R[Tg~ ~ ~* (1 --Y)] f ,  (27) 
d~ 7~o + O* (i -- y) 

- -  k o. where a* == aCgo273 
Pp 

Wri t ing Eq. (27) in dimensionless form, we write the solution as 
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Y 

if 
! 

I 
(Om--O*y) e X P ( o  _ O , y ) )  

y~ , 

(28) 

where 

a* = aCf-~176176 ; 0 o R273.  O* RO* 
pp E E 

Om = {)go-}- O* -- R(Tg o+ 0") . 0 RTgo 
E ' g o  E 

The integral in Eq. (28) is calculated with the expression 

{ ..... 1) (1) 
1: = l a _ ,  Om Y O*y exp (, Om ---O*y "-- Og~ ~ .  @ 

O* O* O*y 

1 )]. 
A c o m p a r i s o n  of  c a l c u l a t e d  and e x p e r i m e n t a l  d a t a  [11] on c o m b u s t i o n  o f  a n t h r a c i t e  culm 

d u s t  w i t h  ou r  c a l c u l a t i o n s  f o r  c o m b u s t i o n  i n  t h e  d i f f u s i o n  r e g i o n  a r e  shown i n  F i g .  l a .  A l l  
r eg im e  p a r a m e t e r s  were  t a k e n  f rom [ 1 1 ] ,  and . the  i n i t i a l  p a r t i c l e  s i z e  d i s t r i b u t i o n  was ca lcu- ,~ .  
l a t e d  a f t e r  Eq. (3)  w i t h  do = 44 l~m. Also  shown f o r  c o m p a r i s o n  a r e  e x p e r i m e n t a l  d a t a  on 
c o m b u s t i o n  o f  a n t h r a c i t e  cuim d u s t  i n  a TP-70 b o i l e r  f u r n a c e  [11] ( s e e  P i g .  l b ) .  Samples o f  
t h e  medium f o r  a n a l y s i s  we re  t a k e n  a l o n g  t h e  f l am e  a x i s ,  so i t  can  be  assumed t h a t  i n  t h e  
h o r i z o n t a l  p o r t i o n  o f  t h e  f l ame  c o n d i t i o n s  were  a d i a b a t i c .  C a l c u l a t i o n s  were  p e r f o r m e d  f o r  an 
i n i t i a l  mean p a r t i c l e  d i a m e t e r  o b t a i n e d  f r o m  t h e  g r a i n  c h a r a c t e r i s t i c s  p r e s e n t e d  i n  [ 1 1 ] .  
Also  shown f o r  c o m p a r i s o n  a r e . c a l c u l a t e d  d a t a  f o r  a s m a l l e r  p a r t i c l e  s i z e .  The i n i t i a l  gas  
t e m p e r a t u r e  was t a k e n  as  Tg0 =.1073oK, and t h e  c a s e  o f  low Reyno lds  numbers  Re (Nud = 2) was 
c o n s i d e r e d .  

C a l c u l a t i o n s  o f  coke  bnrnup i n  t h e  k i n e t i c  r e g i o n  w i t h  Eq. (29) show t h a t  o v e r  a t i m e  
of 0.i-0.2 see particles with initial size up to 10-15 ~m burnup, which is confirmed by 
data on combustion of dust in a TP-230 boiler furnace [Ii]. 

NOTATION 

r, particle radius: ~, time: f(r, ~), particle distribution function over radius; W(r, T), 
combustion rate; N(r) and No, current and total initial number of particles; k, reaction rate 
constant; k0, preexponential factor; E, activation energy; R, ideal gas constant; T, temper- 
ature;~d, mass exchange coefficient; D, diffusion coefficient; Nud, diffusion Nusselt number; 
~ ratio of molecular masses of carbon and oxygen; C, concentration; p, density; b, set of 
thermophysical parameters; m, exponent;F, gamma-function; M, mass; c, specific heat of com- 
bustion of fuel; o= , ~ , 00, 8*, initial fuel concentration in inert gas; n, molecular 
mass; ~ , dimensionless temperatures: total maximum, initial gas, initial flow with particles, 
and maximum increase upon total burnupof fuel; Ei, integral exponential function. Sub- 
scripts: d, diffusion; ox, oxygen; O, initial value; f, fuel; g, inert gas; cp, combustion 
products; r, reduced; p, particle. 
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ORTHOTROPIC PLATE WITH INCLUSION HEATED BY A HEAT SOURCE 

Yu. M. Kolyano, I. R. Tatchin, 
and E. G. Ivanik 

UDC 536.24 

The article presents solutions of steadyproblems of heat conduction for an ortho- 
tropic plate with foreign inclusion of arbitrary and small thickness. 

We consider an orthotropic plate with thickness 2~ with an inclusion in the form of a 
strip of width 2h. We represent the thermophysical characteristics of the system under exami- 
nation in the form 

p (x) = p{~) + (p{O) __ pO)) N(x), (1) 

where p(0) and p(1) are the characteristics of the inclusion and of the base material, re- 
spectively, N(x)=S§ S• are asymmetric unique functions [I]. Heat exchange 
with the environment is effected through the surfaces z = • according to Newton's law. For 
determining the temperature we have the equation [2] 

oxO [ %x(x) ~xOT l +-~-p [ 0 r;~'Y(x) OT j {zz(x)6 T=--w.  (2) 

Heatin$ of a Plate by a Linear Heat Source. We assume that an infinite orthotropic plate 
with an inclusion in the form of a strip 2h wide is heated by a linear heat source of intensity 
q, situated at the center of the inclusion. To determine the stationary temperature field, 
we have Eq. (2), where w= q---8(xj6(y) , and the boundary conditions 
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l im T = 0. ( 3 )  

Taking (I) into account and using the formula 

(q~q%' = ~'~ + ~ '  -T [~1 [~l 8_+ (x -- x~), (4) 

Institute of Applied Problems of Mechanics and Mathematics, Academy of Sciences of the 
Ukrai~ian=SSR, Lvov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. i, pp. 
120-126, January, 1986. Original article submitted October 15, 1984. 

0022-0841/86/5001 $12.50 �9 1986 Plenum Publishing Corporation I01 


